欢迎光临深圳市诚浩通电子有限公司!

24小时咨询热线:

13570818090

红外发射与接收原理和应用实例

来源: 时间:2013-09-09 10:41:40 浏览次数:

红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。
红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。 
1.红外线的特点 人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫。 可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 2.红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光
 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝色等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头。红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。接收头的引脚排列因型号不同而不尽相因接收头的外形不同而引脚的区别。 红外接收头的主要参数如下: 工作电压:4.8~5.3V 工作电流:1.7~2.7mA 接收频率:38kHz 峰值波长:980nm 静态输出:高电平 输出低电平:≤0.4V 输出高电平:接近工作电压 3.红外线遥控发射电路 红外线遥控发射电路框图如图4所示。 框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单、也可以很复杂。例如用于电视机、VCD、DVD和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活。前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般电子技术人员和电子爱好者的编码。图4中的38kHz振荡器即载波信号比较简单,但专业用的和业余用的也有区别,专业用的振荡器采用了晶振,而后者一般是RC振荡器。例如彩电红外遥控器上的发射端用了455kHz的晶振,是经过整数分频的,分频系数为12,即455kHz÷12=37.9kHz。当然也有一些工业用的遥控系统,采用36kHz、40kHz或56kHz等的载波信号。因红外遥控器的控制距离约10米远,要达到这个指标,其发射的载波频率(38kHz)要求十分稳定,而非专业用的RC(38kHz)载波频率稳定性差,往往偏离38kHz甚至很远,这就大大缩短了遥控器的控制距离。因晶振频率十分稳定,所以专业厂家的遥控器全部采用晶振的38kHz作遥控器的载波发送信号。 编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收、解调输出、再作处理。利用红外线的特点,可以制作多路遥控器。在遥控发射电路中,有两种电路,即编码器和38kHz载波信号发生器。在不需要多路控制的应用电路中,可以使用常规集成电路组成路数不多的红外遥控发射和接收电路,该电路无需使用较复杂的专用编译码器,因此制作容易。 
1.频分制编码的遥控发射器 在红外发射端利用专用(彩电、VCD、DVD等)的红外编码通讯协议作编码器,对一般电子技术人员或业余爱好者来说,是难于实现的,但对路数不多的遥控发射电路,可以采用频分制的方法制作编码器,而对一路的遥控电路,还可以不用编码器,直接发射38kHz红外信号,即可达到控制的目的。一路的红外遥控发射电路,在该电路中,使用了一片ICl高速CMOS型4-2输入的“与非”门74HC00集成电路,组成低频振荡器作编码信号(f1),用IC2 555电路作载波振荡器,振荡频率为f0(38kHz)。f1对f0进行调制,所以IC2的③脚的波形是断续的载波,该载波经红外发光二极管发送到空间。电路中的关键点A、B、B’波形,其中B’是未调制的波形。 选用555电路作载波振荡器,其目的是说明电路的调制工作原理,即利用大家熟悉的555产生38kHz方波信号,再利用555的复位端④脚作调制端,即当④脚为高电平时,555是常规的方波振荡器;当④脚为低电平时,555的③脚处于低电平。④脚的调制信号是由ICl的与非门的低频振荡器而获得。 在实际应用中,遥控发射器是3V电池供电,为此只需把555电路ICl剩余的两个与非门组成的38kHz取而代之,如所示。注意:这里未引用CMOS 4-2输入的“与非”门CD4011作电路中的编码器和载波发生器,是因为CD4011作振荡产生方波信号时,属于模拟信号的应用。为了保证电路可靠起振,其工作电压需4.5V以上,而74HC00的CMOS集成电路的最低工作电压为2V,所以使用3V电源,完全可以可靠的工作。
2.遥控接收解调电路 红外接收解调控制电路,IC2是LM567。LM567是一种锁相环集成电路,采用8脚双列直插塑封装,工作电压为+4.75~+9V,工作频率从直流到500kHz,静态电流约8mA。⑧脚为输出端,静态时为高电平,是由内部的集电极开路的三极管构成,允许最大灌电流为100mA。鉴于LM567的内部电路较复杂,这里仅介绍该电路的基本功能。 LM567的⑤、⑥脚外接的电阻(R3+RP)和电容C4,决定了内部压控振荡器的中心频率f01,f01=1/1.1RC,①、②脚接的电容C3、C4到地,形成滤波网络,其中②脚的电容C2,决定锁相环路的捕捉带宽,电容值越大,环路带宽越窄。①脚接的电容C3为②脚的2倍以上为好。 弄清了LM567的基本组成后,再来分析图4电路的工作过程。ICl是红外接收头,它接收红外线信号,接收的调制载波频率仍为38kHz,接收信号经ICl解调后,在其输出端OUT输出频率为f1的方波信号,只要将LM567的中心频率f01调到(用RP)与发射端f1相同,即f01=fl,则当发射端发射时,LM567开始工作,⑧脚由高电平变为低电平,该低电平使三极管8550导通,在A点输出开关信号驱动D触发锁存器,再由它驱动各种开关电路工作。这样,只要按一下图1电路的微动开关K,即发射红外线,接收电路图4即可输出开关信号开通控制电路,再按一下开关K,控制开关信号关闭,这就完成了完整的控制功能。 
3. 频分制多路控制器 利用电路,可以实现多路遥控器,即在发射端,将ICl组成的低频振荡器,其电路模式不变,只改变电阻R2,即可构成若干种R组成的多个频率不同的低频振荡器(即编码),利用微动开关转接,38kHz的载波电路共用;在接收电路中,一体化红外接收头共用,再设置与接收端编码器相同个数的LM567锁相器和后级锁相驱动控制电路,各锁相环的振荡频率与各编码器的低频编码信号的频率对应相等。这样发射端按压不同的按钮,载波信号接入不同频率编码的调制信号时,在接收端,各对应的LM567的⑧脚的电平会发生变化,从而形成多路控制信号。上述所述的工作方式,称为频分制的编码方式。这种频分制工作方式,其优点是可实现多路控制,但缺点是电路复杂,对于路数不多的控制电路,因电路工作原理简单,对一般电子技术人员仍然是有用的。




欢迎来电咨询:135 7081 8090

        刘艺明                周天贞               邓  欢                罗加旺                朱  斌                   黄  阳              

                                                

                                                                                                                                                        

Copyright ©2019  深圳市诚浩通电子有限公司   技术支持:全胜网络  网站备案 号:粤ICP备12034127号-1深圳市宝安区福海街道新田社区正中科技园6栋5楼